Convergence Theorems for Two Families of Weak Relatively Nonexpansive Mappings and a Family of Equilibrium Problems

نویسندگان

  • Xin Zhang
  • Yongfu Su
  • XIN ZHANG
  • YONGFU SU
چکیده

The purpose of this paper is to prove strong convergence theorems for common fixed points of two families of weak relatively nonexpansive mappings and a family of equilibrium problems by a new monotone hybrid method in Banach spaces. Because the hybrid method presented in this paper is monotone, so that the method of the proof is different from the original one. We shall give an example which is weak relatively nonexpansive mapping but not relatively nonexpansive mapping in Banach space l2. Our results improve and extend the corresponding results announced in [W. Takahashi and K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Appl. (2008), Article ID 528476, 11 pages; doi:10.1155/2008/528476] and [Y. Su, Z. Wang, and H. Xu, Strong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappings, Nonlinear Anal. 71 (2009), no. 11, 5616–5628] and some other papers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New hybrid method for equilibrium problems and relatively nonexpansive mappings in Banach spaces

In this paper, applying hybrid projection method, a new modified Ishikawa iteration scheme is presented for finding a common element of the solution set of an equilibrium problem and the set of fixed points of relatively nonexpansive mappings in Banach spaces. A numerical example is given and the numerical behaviour of the sequences generated by this algorithm is compared with several existence...

متن کامل

Weak and strong convergence theorems for a finite family of generalized asymptotically quasinonexpansive nonself-mappings

In this paper, we introduce and study a new iterative scheme toapproximate a common xed point for a nite family of generalized asymptoticallyquasi-nonexpansive nonself-mappings in Banach spaces. Several strong and weakconvergence theorems of the proposed iteration are established. The main resultsobtained in this paper generalize and rene some known results in the currentliterature.

متن کامل

Approximating fixed points for nonexpansive mappings and generalized mixed equilibrium problems in Banach spaces

We introduce a new iterative scheme for nding a common elementof the solutions set of a generalized mixed equilibrium problem and the xedpoints set of an innitely countable family of nonexpansive mappings in a Banachspace setting. Strong convergence theorems of the proposed iterative scheme arealso established by the generalized projection method. Our results generalize thecorresponding results...

متن کامل

Weak Convergence of an Iterative Method for Equilibrium Problems and Relatively Nonexpansive Mappings

The purpose of this paper is to consider an iterative method for an equilibrium problem and a family relatively nonexpansive mappings. Weak convergence theorems are established in uniformly smooth and uniformly convex Banach spaces.

متن کامل

Strong convergence of a general implicit algorithm for variational inequality problems and equilibrium problems and a continuous representation of nonexpansive mappings

We introduce a general implicit algorithm for finding a common element of‎ ‎the set of solutions of systems of equilibrium problems and the set of common fixed points‎ ‎of a sequence of nonexpansive mappings and a continuous representation of nonexpansive mappings‎. ‎Then we prove the strong convergence of the proposed implicit scheme to the unique solution of the minimization problem on the so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010